A parallelized implementation of the gCoda approach (Fang et al., 2017), published on GitHub (Fang, 2016).
Usage
gcoda(
x,
counts = F,
pseudo = 0.5,
lambda.min.ratio = 1e-04,
nlambda = 15,
ebic.gamma = 0.5,
cores = 1L,
verbose = TRUE
)
Arguments
- x
numeric matrix (nxp) with samples in rows and OTUs/taxa in columns.
- counts
logical indicating whether x constains counts or fractions. Defaults to
FALSE
meaning that x contains fractions so that rows sum up to 1.- pseudo
numeric value giving a pseudo count, which is added to all counts if
counts = TRUE
. Default is 0.5.- lambda.min.ratio
numeric value specifying lambda(max) / lambda(min). Defaults to 1e-4.
- nlambda
numberic value (integer) giving the of tuning parameters. Defaults to 15.
- ebic.gamma
numeric value specifying the gamma value of EBIC. Defaults to 0.5.
- cores
integer indicating the number of CPU cores used for computation. Defaults to 1L. For
cores
> 1L,foreach
is used for parallel execution.- verbose
logical indicating whether a progress indicator is shown (
TRUE
by default).
Value
A list containing the following elements:
lambda | lambda sequence for compuation of EBIC score |
nloglik | negative log likelihood for lambda sequence |
df | number of edges for lambda sequence |
path | sparse pattern for lambda sequence |
icov | inverse covariance matrix for lambda sequence |
ebic.score | EBIC score for lambda sequence |
refit | sparse pattern with best EBIC score |
opt.icov | inverse covariance matrix with best EBIC score |
opt.lambda | lambda with best EBIC score |